Thursday, September 13, 2012

Bsc 1st Year Notes-Butter and Cream


                                                 BUTTER –NOTES

 Butter is the fat of cream that is separated – more or less – completely from the other milk constituents by agitation or churning. The mechanical rupture of the protein film around the fat globules allows the fat globules to clump together. Butter formation is an example of breaking of an oil-in-water emulsion by agitation. The resulting emulsion that forms in butter itself is a water-in-oil emulsion, with about 18% water being dispersed in 80% fat and a small amount of protein acting as an emulsifier.
Butter is made from either sweet or sour cream. Butter from sour cream has a more pronounced flavour. The cream may be allowed to sour naturally or may be acidified by the addition of pure culture of lactic acid bacteria to sweet cream, which produces a butter of better flavour and keeping quality.
It consists of more than 80% butterfat and small amounts of protein  vitamin A and D, minerals, lactose and water. Butter must have a minimum of 80% fat content, a non-fat solid content of 2% and a maximum of 16% moisture (water).

Composition
Average composition of Butter
Fat 82.5%
Protein (Casein) 1.5%
Lactose 2%
Salt 2%
Water 12%

Factors that affect quality of Butter
1. The breed of animal (cow or buffalo) from which the milk was obtained.
2. The type of feed that was available for the animal.
3. The method of manufacture (fresh or ripened cream).
4. The efficiency of manufacture (wrong temperature may affect the colour and flavour of butter).
5. Whether or not the butter was blended.
6. The addition of salt and colour.
7. The method of packing and storing.

Classification of Butter
There are four main types of butter:
1. Fresh or Sweet cream Butter,
2. Ripened cream or Lactic Butter,
3. Blended or Milled Butter and
4. Special Butter
(Fresh and ripened cream Butters are known as “Creamery Butters”).

Manufacture of Creamery Butter
The manufacture of creamery butter takes place in four main stages, as mentioned:
1. Holding
The cream (35%) is pasteurized at 95°C (203°F) and held for 2 to 4 seconds. It is then cooled to 4.5°C (40°F) and held there for several hours to ensure the uniform hardening of the fat globules.
2. Ripening
When the end product is going to be a ripened butter or lactic butter, a “starter” (which is a laboratory culture of acid-producing bacteria) will be added during the Holding stage, in which the holding temperature will be 15.5-18.5°C (60-65°F) for 3 to 4 hours before being cooled to 4.5°C (40°F). This gives the butter a much fuller flavour. However, the flavour tends to fade and therefore the ripened cream butter has a shorter life than the sweet cream butters. This stage will be omitted when making the sweet cream butter.
3. Churning
The churning of cream is done in large stainless steel churns that hold about 1000 gallons of cream. The temperature must not exceed more than 4°C. The churns are rotated while internal rollers pass through the cream. This breaks the envelope of non-fat particles/solids that surround the small fat globules and coalesce to form larger groups of butter fat. The envelope is dispersed in the thin liquid part of the cream to form buttermilk. After about 30 minutes of churning, the butter separates out in the form of grains and floats in the buttermilk. The buttermilk is carefully drained away and used for other purposes.
4. Washing and Salting
The butter grains are now washed with ice water to remove any traces of buttermilk left on the surface of each grain, in order to maximize the keeping quality. Ice water also helps to harden butter grains. Salting can be done in two ways:
a. By adding fine grains of dairy salt, and
b. By soaking in a brine solution for 10-15 minutes and allowing the butter to absorb it.
The quantity of salt added usually average 1% for ripened cream butter and 1.5% for
fresh cream butter. Salt contributes to flavour and improves the keeping quality.
The butter grains are then worked into a smooth solid mass by rotating the churns slowly for 10-15 minutes, then weighed and packed. Colouring (annatto) may also be added at this stage. If unsalted butter is required, the salting stage is omitted.

Blended Butter
Blended butter is a blend of butters from different regions or countries. These are mixed together to produce a product of standard quality at a competitive price, under a brand name.

Special Butters
This group includes some butter that are not commonly available and those which are not true butters. These include:
1. Whey Butter
Whey is the liquid which separates from the curd while making cheese. The butterfat obtained from the whey may be used to produce butter, or it may be added to fresh cream/milk prior to it being processed into butter. Due to its origin, this butter has a faint cheesy flavour.
2. Milk blended Butter
Quantities of milk are blended into butter, thereby increasing the moisture content to 24% (max.).
3. Powdered Butter
This is spray-dried butter containing 80% milk fat and non-fatty solids. It is produced on a large scale in Australia and is used mainly in the Bakery trade.
4. Compound Butters
These are made by adding a particular natural flavour or colour to butter, depending on the type of food with which it is served. It is generally used as an accompaniment e.g. Lobster Butter, Parsley Butter etc.
5. Cocoa Butter
This is not a true butter, rather obtained by crushing the cocoa beans. It is the most expensive ingredient used in chocolate making. Cocoa butter substitutes, using palm oil, are also available.
6. Peanut Butter
It is a paste-like substance obtained by grinding roasted peanuts that may be further emulsified and flavoured.

Uses of Butter
1. As a spread for bread, toast and scones.
2. As a basic ingredient in pastry-making and cake-making.
3. Used as an accompaniment (compound butter).
4. To enhance the taste and flavour of soups and sauces.
5. As a cooking medium (The smoke point of butter fat is only 127-130°C; so a vegetable oil should be used when high cooking temperatures are required).
6. For butter sculptures.
Butter is available in 10 Gms, 100 Gms and 500 Gms packs in the market.

Storage
Butter is a perishable product and tends to loose flavour and go rancid on prolonged storage. Exposure to sunlight can make it go rancid faster.
It must be stored at refrigerated temperatures (2°C), well wrapped and away from strong flavoured foods, for it absorbs odours and flavours easily. If purchased in bulk, it can be frozen at -25 to -35°C.

A good quality butter should have a clean flavour and aroma characteristic of the type of butter, have a close body, a waxy texture, be of uniform colour, have a uniform distribution of salt (if added), be clean in appearance and have an absence of any free moisture.
¬¬¬¬¬
Ghee is obtained by clarifying butter. Butter is heated to evaporate water. Pure ghee has a higher keeping quality and is a good cooking medium and a shortening agent used in Indian Cuisine.

                 

 

                                                  CREAM -NOTES
Cream is the fat separated from milk. It is the lighter portion of milk containing all the main constituents of milk, but in which fat content is high and the solid (non fat) content is lower.

Cream is commercially separated from milk in a creamery, by means of a mechanical separator. The milk is first heated to between 32-49°C (90-120°F) before being run into the separator which operates like centrifugal machine, rotating at very high speed and forcing the milk, which is heavier, to the outside; while the cream, which is lighter, remains at the centre. The cream and the skimmed milk are drained out through separate outlets and by means of a control valve, the fat content is adjusted. The skimmed milk is then heated to 79.5°C (175°F) to kill off any harmful bacteria before being further processed into dried milk etc.

Types of Cream
There are a variety of creams available in the market, each having a different fat content:
Type of Cream Fat Content
Single Cream 18%
Whipping Cream 35%


Double Cream 48%
Double Thick Cream 50%
Sterilized Half Cream 12%
Sterilized Cream 23%
Clotted Cream 55%

For general purposes, cream may be classified into:
1. Whipping Cream (>30% fat).
2. Light or Coffee Cream (18% fat).
3. Half-and-half (10.5% fat).
4. Non-dairy or Manufactured Cream.

Half-and-half is a mixture of milk and light cream and it may be used in place of coffee cream. Cream containing sugar, stabilizers and flavouring is sold in pressurized containers. Non-dairy products containing water, vegetable fat, sugar, sodium caseinate, emulsifiers and vegetable gums are also available in pressurized cans. Nondairy products for whipped toppings, coffee, whiteners and snack dip bases are also available in the market.

Manufactured Cream
1. Reconstituted Cream
It is made by emulsifying butter with skimmed milk or skimmed milk powder. This is not true cream, but a substance which resembles it in appearance.
2. Imitation or Synthetic Cream is made by the emulsification of vegetable fats with dried egg and gelatin, and then sugar and flavourings are added. It is a product which is frequently used in catering and baking trade, but which is very easily contaminated and liable to cause food-poisoning.

Uses of Cream
1. To serve with hot or cold coffee and chocolate.
2. To serve as an accompaniment (fruit based salad).
3. To be used fro decorative purposes in cakes and gateaux and for garnishes in soups and desserts.
4. As a main ingredient in certain desserts such as ice-cream and custards.

Storage of Cream
Fresh cream must be treated in the same way as fresh milk, as far as storage is concerned. Whipped cream must be covered and stored in sterilized containers in the refrigerator and used in the same day. Reconstituted and intimation cream must be refrigerated and only small quantities be whipped, when required for immediate use.

The whipping of Cream
Whipping cream is a product that results from the agitation of cream. During whipping, air is incorporated, thus forming foam, and fat particles are clumped together, producing the characteristic stiffness or rigidity of whipped cream. If whipping is continued too long, the emulsion breaks and butter gets separated. The air bubbles formed in whipped cream are surrounded by protein films in which clumps of fat globules offer structural support, which increases the rigidity of the foam and permits the formation of more air bubbles and the extension of the protein film to surround them. Homogenized cream is not suitable for whipping.

Points to be considered while whipping Cream
1. Use cream with minimum 30% fat for ease in whipping and for a stiff product. Increased fat upto 38% improves the whipping quality of cream.
2. Hold cream at low temperature (7°C) whips well. Lower temperature increases viscosity, which increases the whipping property. The beater and the bowl used should be cold.
3. Whipping property improves with the aging of cream, as viscosity increases.
4. Homogenized cream will not whip satisfactorily. When whipping cream, tiny air bubbles are trapped and surrounded by the fat globules in the cream. Homogenized cream will have had the majority of the fat globules broken down and they will not be sufficient and strong enough to trap and hold the air cells.
5. The utensils must be sterilized. Glass or stainless steel containers are ideal for whipping cream. Avoid using aluminum as it tends to discolour the cream, turning it a dull grey.
6. Increased acidity upto the concentration required to give a sour taste (0.3%) has no effect on whipping quality.
7. Addition of sugar decreases both volume and stiffness and increases time required to whip cream if it is added before whipping. If sugar is to be added, it is best added after the cream is stiff or just before service.

 

                                                 

                   

No comments:

Post a Comment